EJERCICIOS PSU Tema: ECUACIONES DE SEGUNDO GRADO

- ¿Cuál de las siguientes expresiones es equivalente a (m + n)² 4mn? 1.

 - A) $(m-n)^2$ B) m^2-2+n^2
 - C) $m^2 4mn + n^2$
 - D) 2m 4mn + 2n
 - E) 2m 2mn + 2n
- Se a ≠ 0, ¿cuál(es) de las afirmaciones siguientes es(son) verdadera(s) respecto de las soluciones de la ecuación $x^2 - 3ax + 2a^2 = 0$?
 - I) Son iguales
 - Tienen igual signo II)
 - Una es el doble de la otra III)
- A) Sólo I
- B) Sólo III
- C) Sólo I y II
- D) Sólo II y III
- F) Ninguna de ellas
- Dada la ecuación cuadrática $x^2 + bx + 4 = 0$ y el conjunto de posibles 3. valores de b, {-10, -8, -6, -4, -2, 0, 2, 4, 6, 8}, ¿cuál es la probabilidad de que al reemplazar el valor elegido al azar, la ecuación tenga soluciones reales y distintas?
 - A) 0,50
 - B) 0,70
 - 0,75 C)
 - D) 0,78
 - E) 0,80
- ¿Cuál(es) de las expresiones siguientes es(son) divisor(es) de la expresión algebraica $2x^2 - 6x - 20$?
 - 2
 - II) (x - 5)
 - III) (x + 2)
 - A) Sólo I
 - B) Sólo II

5. ¿Cuál de las siguientes ecuaciones tiene como soluciones a -2 y 3?

A)
$$x^2 - x + 6 = 0$$

B)
$$x^2 + x - 6 = 0$$

C)
$$3x^2 - 3x - 12 = 0$$

A)
$$x^{2} - x + 6 = 0$$

B) $x^{2} + x - 6 = 0$
C) $3x^{2} - 3x - 12 = 0$
D) $-2x^{2} + 2x + 12 = 0$

E)
$$5x^2 - 5x + 3 = 0$$

6. La ecuación de segundo grado cuyas raíces son α y β - α es:

A)
$$x_{2}^{2} - \beta x + \alpha(\beta - \alpha) = 0$$

B) $x_{2}^{2} + \beta x + \alpha(\beta - \alpha) = 0$

B)
$$x^2 + \beta x + \alpha(\beta - \alpha) = 0$$

C)
$$x_2^2 - \beta x + \alpha(\beta + \alpha) = 0$$

D)
$$x^2 - \beta x - \alpha(\beta + \alpha) = 0$$

E) Ninguna de las anteriores.

$$\frac{1}{a+b}$$
 y $\frac{1}{a-b}$

La ecuación de segundo grado que tiene como raíces 7. a:

A)
$$(a^2 - b^2)x^2 - 2ax + 1 = 0$$

B)
$$(a-b)^2x^2-2ax+1=0$$

C)
$$(a^2 - b^2)x^2 + 2ax + 1 = 0$$

D)
$$(a-b)^2x^2 + 2ax + 1 = 0$$

- E) Ninguna de las anteriores
 - 8. si $x^2 + y^2 = 40$ y además 12xy = 144, entonces x + y?

$$B) \pm 4$$

$$C) \pm 8$$

- $D) \pm 16$
- E) no se puede determinar.

9.

La ecuación cuadrática cuyas raíces son a y b es:

- A) x²-ax+b=0
- B) $x^2 bx + a = 0$
- C) $x^2 + (a + b) x + ab = 0$
- D) $x^2 (a + b)x + ab = 0$
- E) $x^2 bx a = 0$

10. Si un número 8n2 + 3n + 2 es mayor en 2n2 + n + 5 que otro. ¿Cuál es éste último número?

- A) 3n2 + n 3
- B) 6n2 + 2n 6
- C) 3n2 + 6n 6
- D) 6n2 + n 3
- E) 6n2 + 2n 3

11. ¿Cuáles son las raíces (soluciones) de la ecuación x(x-3) = 10?

- A) 3, 10
- B) -3, 10
- C) 2, 10
- D) 2, 5
- E) -2, 5

12.

Determinar las soluciones de la ecuación $x^4 - 13x^2 + 36 = 0$.

- A) 9 y 4
- B) 3 y -2
- C) $\pm\sqrt{18}$ y $\pm\sqrt{8}$
- D) $\pm 3 y \pm 2$
- E) ±9 y 4

13.

Sea la ecuación de 2° grado $ax^2 + bx + c = 0$. Determinar cuál de las siguientes expresiones permiten calcular las raíces de la ecuación.

I)
$$X = \frac{-\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^2 - ac}}{a}$$

II)
$$x = \frac{2c}{-\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^2 - ac}}$$

$$\text{III)} \quad x^{-1} = \frac{2a}{-b \pm \sqrt{b^2 - 4ac}}$$

- A) Sólo I
- B) Sólo II
- C) Sólo I y III
- D) Sólo II y III
- E) Ninguna de las anteriores.

¿Qué valor debe tomar m en la ecuación $x^2 + mx - (7 + m) = 0$ para que las soluciones sean -2 y 3?

- A) -1
- B) $-\frac{1}{2}$
- C) 1
- D) 2
- E) 3

ſ	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Α	D	Α	Е	D	Α	Α	С	D	П	Е	D	C	Α